
Server
Management

#PSBlogWeek

#PSBlogWeek i

Table of Contents

Intro ii

Dan Franciscus

Automating Chocolatey Package Internalizing With PowerShell 1

Joshua King

24Creating Storage Reports With PowerShell

Josh Duffney

Using Desired State Configuration (DSC) Composite Resources 34

Volker Bachmann

Migration of SQL Server With PowerShell dbatools 46

9

Darwin Sanoy

Logging and Error Handling Best Practices for Automating Windows Update Installs

Markus Kraus

Using PowerShell to Create a vCloud Director Tenant HTML Report 56

#PSBlogWeek Wrap-Up 74

#PSBlogWeek ii

Intro
#PSBlogWeek is a regular, week-long event where people in the Power-
Shell community coordinate blogging on a particular topic around Win-
dows PowerShell. The purpose is to pool our collective PowerShell knowl-
edge together over a 5-day period and write about a topic that anyone
using PowerShell may benefit from. #PSBlogWeek is a Twitter hashtag, so
feel free to stay up-to-date on the topic on Twitter at the #PSBlogWeek
hashtag. For more information on #PSBlogWeek or if you'd like to volunteer
for future sessions, contact Adam Bertram (@adbertram) on Twitter.

#PSBlogWeek

#PSBlogWeek i

Automating Chocolatey Package
Internalizing With PowerShell

Dan Franciscus
Follow on Twitter @dan_franciscus

#PSBlogWeek 2

Many organizations are turning to Chocolatey to manage their Windows
packages, and for good reason. Chocolatey allows sysadmins to manage
packages completely via the command-line interface (CLI), allowing them
to automate the creation, installation, and uninstallation of packages.

If an organization is serious about using Chocolatey to manage its packages,
then it really should host its own package repository. Of course, you could
use the public Chocolatey repository as your source for packages, but this is
a bad idea for a couple of reasons. First, you would have to trust the main-
tainers of those packages completely, and second, you would need to
reach out to the internet to install the packages.

Fortunately, Chocolatey for Business (C4B) allows you to recompile (or inter-
nalize) public packages easily, which then enables you to push these pack-
ages to your own repository. Internalizing refers to taking remote installers
that public packages may call, downloading them, and then embedding
them in your NuGet package or another location such as a CIFS share.

When I created my own repository, one of the first tasks I looked at automat-
ing was internalizing public packages—especially since I manage hundreds
of packages. Doing this has saved me countless hours creating my own
packages. The initial internalizing of packages from Chocolatey is actually
quite simple, as I will show below, but what happens when a new package
version is released? This is where PowerShell comes in handy.

In this article, I will demonstrate how to check for updated Chocolatey pack-
ages, test installation, and internalize them automatically. Keep in mind this is
done with the Chocolatey Business version, which significantly eases the pro-
cess.

How Chocolatey internalizing works
Internalizing essentially means Chocolatey will take any remote resources
that a public package uses (such as installers), and it will download them
locally to create another NuGet package you can use. By default, the
resources are relocated into the “tools” directory of the NuGet package.
Here I will show a simple example of internalizing the ownCloud client. As you
can see in the output, the recompiled package is available in the C:\Exam-
ple directory:

Now, if we compare the ChocolateyInstall.ps1 file from the public repository
to the internalized package we just created, we can see the difference. The
internalized package points to the local installer instead of the ownCloud
URL, but the checksum is the same:

Public package:

Internalized package:

Internalizing multiple Chocolatey packages
Let’s say I have a group of packages I want to internalize. In this example,
they’re Google Chrome, Git, LastPass, and Notepad++. A recent release of
the Chocolatey Business version allows you to pass multiple packages with
choco download:

Cool! Now we can just push the packages to our hosted repository:

Automating Chocolatey
Package Internalizing With

PowerShell

#PSBlogWeek

Many organizations are turning to Chocolatey to manage their Windows
packages, and for good reason. Chocolatey allows sysadmins to manage
packages completely via the command-line interface (CLI), allowing them
to automate the creation, installation, and uninstallation of packages.

If an organization is serious about using Chocolatey to manage its packages,
then it really should host its own package repository. Of course, you could
use the public Chocolatey repository as your source for packages, but this is
a bad idea for a couple of reasons. First, you would have to trust the main-
tainers of those packages completely, and second, you would need to
reach out to the internet to install the packages.

Fortunately, Chocolatey for Business (C4B) allows you to recompile (or inter-
nalize) public packages easily, which then enables you to push these pack-
ages to your own repository. Internalizing refers to taking remote installers
that public packages may call, downloading them, and then embedding
them in your NuGet package or another location such as a CIFS share.

When I created my own repository, one of the first tasks I looked at automat-
ing was internalizing public packages—especially since I manage hundreds
of packages. Doing this has saved me countless hours creating my own
packages. The initial internalizing of packages from Chocolatey is actually
quite simple, as I will show below, but what happens when a new package
version is released? This is where PowerShell comes in handy.

#PSBlogWeek 3

In this article, I will demonstrate how to check for updated Chocolatey pack-
ages, test installation, and internalize them automatically. Keep in mind this is
done with the Chocolatey Business version, which significantly eases the pro-
cess.

How Chocolatey internalizing works
Internalizing essentially means Chocolatey will take any remote resources
that a public package uses (such as installers), and it will download them
locally to create another NuGet package you can use. By default, the
resources are relocated into the “tools” directory of the NuGet package.
Here I will show a simple example of internalizing the ownCloud client. As you
can see in the output, the recompiled package is available in the C:\Exam-
ple directory:

Now, if we compare the ChocolateyInstall.ps1 file from the public repository
to the internalized package we just created, we can see the difference. The
internalized package points to the local installer instead of the ownCloud
URL, but the checksum is the same:

Public package:

Internalized package:

Internalizing multiple Chocolatey packages
Let’s say I have a group of packages I want to internalize. In this example,
they’re Google Chrome, Git, LastPass, and Notepad++. A recent release of
the Chocolatey Business version allows you to pass multiple packages with
choco download:

Cool! Now we can just push the packages to our hosted repository:

Many organizations are turning to Chocolatey to manage their Windows
packages, and for good reason. Chocolatey allows sysadmins to manage
packages completely via the command-line interface (CLI), allowing them
to automate the creation, installation, and uninstallation of packages.

If an organization is serious about using Chocolatey to manage its packages,
then it really should host its own package repository. Of course, you could
use the public Chocolatey repository as your source for packages, but this is
a bad idea for a couple of reasons. First, you would have to trust the main-
tainers of those packages completely, and second, you would need to
reach out to the internet to install the packages.

Fortunately, Chocolatey for Business (C4B) allows you to recompile (or inter-
nalize) public packages easily, which then enables you to push these pack-
ages to your own repository. Internalizing refers to taking remote installers
that public packages may call, downloading them, and then embedding
them in your NuGet package or another location such as a CIFS share.

When I created my own repository, one of the first tasks I looked at automat-
ing was internalizing public packages—especially since I manage hundreds
of packages. Doing this has saved me countless hours creating my own
packages. The initial internalizing of packages from Chocolatey is actually
quite simple, as I will show below, but what happens when a new package
version is released? This is where PowerShell comes in handy.

In this article, I will demonstrate how to check for updated Chocolatey pack-
ages, test installation, and internalize them automatically. Keep in mind this is
done with the Chocolatey Business version, which significantly eases the pro-
cess.

How Chocolatey internalizing works
Internalizing essentially means Chocolatey will take any remote resources
that a public package uses (such as installers), and it will download them
locally to create another NuGet package you can use. By default, the
resources are relocated into the “tools” directory of the NuGet package.
Here I will show a simple example of internalizing the ownCloud client. As you
can see in the output, the recompiled package is available in the C:\Exam-
ple directory:

Now, if we compare the ChocolateyInstall.ps1 file from the public repository
to the internalized package we just created, we can see the difference. The
internalized package points to the local installer instead of the ownCloud
URL, but the checksum is the same:

#PSBlogWeek 4

Public package:

Internalized package:

Internalizing multiple Chocolatey packages
Let’s say I have a group of packages I want to internalize. In this example,
they’re Google Chrome, Git, LastPass, and Notepad++. A recent release of
the Chocolatey Business version allows you to pass multiple packages with
choco download:

Cool! Now we can just push the packages to our hosted repository:

#PSBlogWeek 5

Automating the checking and
internalizing for new package
versions
Now that we have a set of packages internalized, I want to take this a step
further and automate internalizing any new version of a package if it is
released on the Chocolatey repository, creating a very basic pipeline. There
are a few ways to do this, but what I prefer is to use a virtual machine (VM)
that will act as a testing machine for checking, installing, and internalizing
new public packages. Set at a certain time interval, such as every 4 hours,
this VM will run my script, which includes the command choco outdated. This
command will see if any Chocolatey packages the machine installed are
outdated based on the Chocolatey repository. If the VM finds certain pack-
ages have updated versions available, it will first internalize them, then install
them to itself, and finally push them to our hosted NuGet server. Pretty cool!

To combine all of this, I created a PowerShell function Add-ChocoInternal-
izedPackage, which orchestrates this process. Here I will step through some
of the code to show you what is happening. Please keep in mind this is a work
in progress and currently does not work perfectly.

The parameter $APIKeyPath indicates that you have an encrypted file that
has the API key of your internal Chocolatey repository. The first thing the func-
tion does is grab this key to use later on in choco push:

Here, we run choco outdated -r to get any out-of-date packages on our
local machine. If any are found, we create a custom PowerShell object. The
output of choco outdated needs to be parsed and formatted a bit since “|”
is the delimiter, so we use the split method and place them into their own
properties. Now, $NewPackages can be processed by the rest of the script.

#PSBlogWeek 6

We loop through the packages that need updating, but skip any packages
with the name *.install that is also contained in the $NewPackages.Name
object. The reason for this is that many packages such as “git” are actually
virtual packages that just call *.install (example git.install). When using choco
download, all packages including virtual and dependency packages are
downloaded to be internalized, so “git.install” will still be internalized when
the “git” package is processed. Skipping *.install packages will save us from
redundancy. The $DownloadTime variable is used to filter all packages
downloaded after this time, as you will see later.

This block of code attempts to internalize the package locally and save it to
whatever path is in the $WorkingDirectory variable. Notice we check the
$LASTEXITCODE variable to ensure that there were no errors in the choco
download command. If $LASTEXITCODE is anything but zero (success), we
add it to the $Failure array and move to the next package.

#PSBlogWeek 7

If internalization is successful, it attempts to install that package from the
local Chocolatey package. And if the package installs correctly, it pushes all
internalized packages created after the $DownloadTime variable (which
again includes dependency and virtual packages) to your hosted repository
with choco push, using the value of $RepositoryURL for your feed.

In terms of adding packages to the $Success and $Failure arrays, I chose to
use Split-Path and remove the $WorkingDirectory from the value since that is
not necessary for the user to see.

Finally, we write the contents of the successful and failed packages to the

console. Optionally, you could put this into Send-MailMessage and email the
results.

See it in action
Here is an example of the function running while it internalizes, installs, and
pushes the “curl” package to my repository named “myfeed”. For testing
purposes, I am not using https for the internal feed (which is highly recom-
mended). To increase the size of the gif, please click on it.

As in any enterprise environment, you may want to vet the packages you are
internalizing, although the Business version of Chocolatey does have some
built-in security—such as Virus scanning (against installed A/V or VirusTo-
tal)—not to mention all packages in the public repository go through a rigor-
ous process of approval.

If you care to steal my code, you can do it here on Github .

If internalization is successful, it attempts to install that package from the
local Chocolatey package. And if the package installs correctly, it pushes all
internalized packages created after the $DownloadTime variable (which
again includes dependency and virtual packages) to your hosted repository
with choco push, using the value of $RepositoryURL for your feed.

In terms of adding packages to the $Success and $Failure arrays, I chose to
use Split-Path and remove the $WorkingDirectory from the value since that is
not necessary for the user to see.

Finally, we write the contents of the successful and failed packages to the

#PSBlogWeek 8

console. Optionally, you could put this into Send-MailMessage and email the
results.

See it in action
Here is an example of the function running while it internalizes, installs, and
pushes the “curl” package to my repository named “myfeed”. For testing
purposes, I am not using https for the internal feed (which is highly recom-
mended). To increase the size of the gif, please click on it.

As in any enterprise environment, you may want to vet the packages you are
internalizing, although the Business version of Chocolatey does have some
built-in security—such as Virus scanning (against installed A/V or VirusTo-
tal)—not to mention all packages in the public repository go through a rigor-
ous process of approval.

If you care to steal my code, you can do it here on Github .

#PSBlogWeek i

Logging and Error Handling
Best Practices for Automating
Windows Update Installs

Darwin Sanoy
Follow on Twitter @DarwinTheorizes

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 10

-
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-

lations

#PSBlogWeek

Logging and Error Handling
Best Practices for Automating

Windows Update Installs

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

#PSBlogWeek 11

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

#PSBlogWeek 12

2. For the same root cause, wusa.exe exit codes are different from logged error
codes

3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 13

with my work can frequently solve the problem on their own when the right logging data
is in front of them. That makes me, my team and other teams faster and more productive.
3. When I get calls, I can ask for the logs that I already know exist. That makes me, my
team and other teams faster and more productive :)

4. In production (or test or dev) there is no need to attempt to reproduce the problem
AFTER logging has been enabled - so if you have a rare transient problem, you get maxi-
mum information on every occurence. That makes me, my team and other teams faster
and more productive :)

5. I have come across many, many interesting edge cases simply by having verbose log-
ging on for development. That allows me to bake in handling of specific issues when merit-
ed or to at least document them and their resolution.

Always Run msu.exe With Verbose Logging

While wusa.exe logging is very useful, there a couple nuances about it that are challeng-
ing to navigate - especially if you are starting to use the parameter for the first time.

1. The log output format is “Exported Event Log” - in other words the same type of file as if
you exported windows event logs using the event log viewer. Great confusion results if you
give it a .log extension because you and others will try to open it in a text editor. A bunch
of the productivity benefits I seek are lost if individuals besides myself can’t view the con-
tents without contacting me. To get around this I simply name the log file with the export-
ed event file extension. This causes it to open in the event log viewer if double-clicked and
it also cues other people that the file is not a simple text file. I also like to use a file name
that communicates a lot of meta data.

The below example tells exactly what update and exactly when the install happened. If
people might send me these in email, I’d probably also embed the computer name,
because having the wrong log sent to me is a frequent experience that makes us all less
productive:

2. The command line parameter is fussy. Unlike the other parameters for wusa.exe it:
1. MUST have a colon after it,
2. must not have whitespace after the colon,
3. must be enclosed in quotes if there are spaces in the file name
4. If you break any of these rules, windows update generally runs without errors, it

just does not generate a log.

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 14

The above list is an aggregate across multiple versions of Windows - so not all of these sen-
sitivities might be present in a given version of Windows.

Here is an example of what I use to avoid these problems:

Surface The Fact That You Are Doing Detailed Logging
In addition to being a big advocate of logging of called processes, I am a big advocate
of verbose logging for my own automation. It is simply mind boggling how many times I
find this truncates the root cause determination phase. I will receive a log and immediate-
ly notice things like:

1. The wrong version of the automation code has been used.
2. Incorrect parameters were used to call the automation code.
3. Incorrect parameters were used to call the sub-process.
4. The code cannot find something which should be a standard part of every environment

it was designed to run in.
5. Exactly what generated “Access Denied”.

This makes me more productive :)

However, another big reason I want to log the fact that I am doing detailed logging on a
sub-process is for other professionals to take notice, examine that log and frequently solve
the problem on their own - which makes both of us more productive.

Best Practices for Logging The Log Location (and the
Calling Command Line)
1. When I do verbose logging of something like wusa.exe I want to surface that fact in the
automation log so that others using the work will notice that there is more detailed logging
on a specific call available. By ensuring that verbose log location for subprocesses are
logged in the top level log, I will help others to follow the chain of available forensic data

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 15

in hopes they can solve the problem.

2. I log the sub-process log location all the time, not just if there is an error. This is because
there are situations where an error is thrown somewhere else in the script, but these ver-
bose logs reveal the problem or lead to insights that reveal the problem.

3. I also ensure that I Log the exact command line used to call the subprocess. When
doing this it is helpful to have stored the command line to run in a variable and use the
variable for the actual call as well as the log message. If the same variable is not used, the
log can end up being misleading when you update the actual command but forget to
find and update the logging lines to reflect that update.

4. In general it is good form to also emit your log messages to the console because if the
code runs under any kind of orchestration - that orchestration captures all console output.
So for example, if someone is running my code under AWS Cloud Formation - anything
emitted in the console is caught up into the general Cloud Formation log - which elimi-
nates one more step in the chain of logs to be followed.

5. It is best to do this logging before calling the sub-process - then if your call causes a cat-
astrophic failure - the log will contain information on the last call made by the automation
code (which likely caused the failure if it is reproducible).

Best Practices for Logging Folder Names and Log File
Names
Whenever possible I log to system folder (non-user profile) dedicated to the automation
task that is running and use a date time serialized string in the name, among other things
this helps with:

with troubleshooting discovery of the logs related to the automation (relevant logs in the
same folder)

avoids challenges finding logs when run under different user contexts (run under SYSTEM
context or a special user profile for a logged on service)

avoids getting removed in automated temp clean up.
can pick a location that every process can write to and every process and logged on
technician can read from.

remote access to a standardized “logroot” is easy to setup because it is in a known loca-
tion and can be shared as read only.

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 16

Serialization of Folder and/or File: Ensuring that multiple subsequent runs of the same auto-
mation do NOT overwrite each other - overwritten logs complicate troubleshooting as you
never know if you are looking at the exact invocation that caused the problem.

Serialization of Folder and/or File: Better date time correlation when searching for logs.

Serialization of Folder: Allows cumulative logs for logging mechanisms that overwrite a
previously existing log by default.

Serialization of File: Communicates more meta data when the log is shared with others out
of the context of the folder (e.g. email, copy to network).

A distinct downside to a custom folder rather than a temp folder is that that you usually
have to check for the folder and create it before you start logging to it. A downside to seri-
alizing log folder names in and file names in a custom folder that logs can accumulate
indefinitely.

env:publicisanenvironmentvariablethatpointstothepublicpro�le−whichal
folder can be a great standardized log location, for example $env:public\logs

Example Code
As per the Testable Reference Pattern Manifesto all of the below code has been tested.
It is also available in a repository to help avoid problems when copying and pasting from
web pages: CloudyWindowsCode

Fully Serialized Example of Log Naming (logs never overwritten - re-
tains historical runs)

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 17

Non-serialized Example of Log Naming, reset logs to clean every-
time (does not retain history)

Surface Error Messages (and Warnings If You Wish)
The below snippets show various ways of retrieving and potentially acting upon the mes-
sages generated by wusa.exe.

You can creatively mix some of these together - for instance, always re-logging found
warnings and errors - but only taking action if ther are actually errors.

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 18

Always Show All Messages in Log

This code always re-logs the detailed warnings and errors from the windows uupdate log
- this is a good general practice for debugging related errors as well as helping with mes-
sages that are classfied as “Warnings” by windows update, which are essentially errors for
your deployment scenario.

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 19

Using the Existence of an Error in the Verbose Log

The code relies on the windows update to accurately report errors and then consider that
there is a problem only if that is true. A downside to this code is that it will not capture mal-
formed wusa.exe command lines or a non-existent .msu.

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 20

Adding Try / Catch - Just Display Errors and Warnings

Try/Catch should be used to capture exceptions that happen because wusa.exe cannot
be found or started at all.

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 21

Acting Upon Specific Messages

The following code shows how to take action depending on the CONTENT of the error in
the verbose windows update / wusa.exe log. The action in this case is simply to give a
more meaningful error - but if the error is recoverable, you can use the same code block
to take action.

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 22

Dissecting Windows Update Packages

This is most frequently done to attempt to understand the prerequisites or OS targeting of
a given update in order to understand why it gets the error 0x80240017 / 2149842967 /
-2145124329.

This Code In Production

This code is used in the PowerShell for Windows Chocolatey package. It is used to surface
better details about why the ugprade failed.

This package has been installed over 1.1 million times - so exposing the underlying errors
for others to resolve on their own guards my time and keeps me a lot more productive ;)

Chocolate Package for PowerShell for Windows (see the ‘catch’ statement near the
bottom of this script): https://github.com/DarwinJS/ChocoPackages/blob/master/Pow-
erShell/v5.1/tools/ChocolateyInstall.ps1

Updated Code In This Article

The below code’s primary home is on the following repository - where it might be
improved upon compared to the below. It is also safer to use the code from the repo
rather than copy and paste from this post: https://github.com/DarwinJS/CloudyWindow-
sAutomationCode

Additional Common Errors

0x80070003 / 2147942403 - The system cannot find the file specified. => The .MSU file is not
available at the location passed to wusa.exe. Also occurs in other circumstances. Win-
dows Update Troubleshooter

0x800705B4 / 2147943860 => Timeout Period Expired. Troubleshooting Guide, Windows
Update Troubleshooter

Logging and Error Handling Best Practices for Auto-
mating Windows Update Installs
Automation of Windows Updates is generally done by calling wusa.exe
against a .MSU file. When wusa.exe experiences a failure the messages are
typically obscure and hard to diagnose. The underlying error messages, how-
ever, are frequently easy to understand and resolve.

The secret is to have wusa.exe do verbose logging in it’s standard exported
windows event format and then use the PowerShell event message CMDLets
to query that log - automatically, everytime you have an error.

Although focused on applying updates with wusa.exe, this article contains
most of my logging best practices for automation coding when calling auto-
mated sub-processes.

In This Post

• Toolsmithing Perspective
• Windows Updates Error Trapping is Not Straight Forward
• Examples Of Challenging Messages
• Logging - The Foundation Of Good Exception Handling and Quicker Resolution of Esca-
lations

• Always Run msu.exe With Verbose Logging
• Surface The Fact That You Are Doing Detailed Logging

• Best Practices for Logging The Log Location (and the Calling Command Line)
• Best Practices for Logging Folder Names and Log File Names

• Example Code
• Fully Serialized Example of Log Naming (logs never overwritten - retains historical

 runs):
• Non-serialized Example of Log Naming, reset logs to clean everytime (does not
retain history)

• Surface Error Messages (and Warnings If You Wish)
• Always Show All Messages in Log
• Using the Existence of an Error in the Verbose Log
• Adding Try / Catch - Just Display Errors and Warnings

• Acting Upon Specific Messages
• Dissecting Windows Update Packages
• This Code In Production
• Updated Code In This Article
• Additional Common Errors
• Comprehensive List of Windows Update Errors
• Additional Links

Toolsmithing Perspective
Everything in this post is helpful even if you are the only one who will ever examine the logs
of the automation you build. However, you will hear a persistent theme in this post of how
it helps “others”. Since I can remember, I have built utility tools that are leveraged by
others or supported by a separate support team. In these cases, investments like the ones
discussed in this article, have a very high “Team ROI” as well as help to guard the automa-
tion developer’s time against unnecessary escalation incidents.

Windows Updates Error Trapping is Not Straight
Forward

There are seve ral attributes of wusa.exe execution that make attention to logging all the
more valuable:

1. wusa.exe critical errors do not generate terminating errors in PowerShell

2. For the same root cause, wusa.exe exit codes are different from logged error
 codes
3. For the same root cause, logged error codes are in decimal while the ones that
 might display interactively when running Windows Update GUI are in hex (but at
 least the same number when converted).

Examples Of Challenging Messages
0x80240017 / 2149842967 / -2145124329 (Wusa.exe exit code) Log: “Windows update
could not be installed because of error 2149842967” Interactive “The update is not appli-
cable to your computer” => Painful - first the logged message is not very helpful. Second,
you can get this message if you simply do not have the correct prerequisites - if you can’t
find the common causes of not meeting prerequisites for the specific update you are
applying, then you have to dissect the windows update to read it’s prerequisites section.
See “Dissecting Windows Update Packages” below.

0x80070422 / 2147943458 / 1058 (Wusa.exe exit code) - Windows Update Cannot Check
For Updates => Usually means the Windows Update Service is stopped - be careful that it
is not stopped for a valid reason (e.g. other long running deployment automation is cur-
rently underway.)

0x80070002 / 2147942402 / 2 (Wusa.exe exit code) - The system cannot find the file speci-
fied. => The .MSU file is not available at the location passed to wusa.exe. Also occurs in
other circumstances.

Additional Common Errors

Logging - The Foundation Of Good Exception
Handling and Quicker Resolution of Escalations
When coding automation I a huge advocate of verbose logging for everything my auto-
mation invokes (as well as having the automation do it’s own logging) - and to a task spe-
cific location when logs can be directed to a custom location.

This is for multiple strategic reasons:

1. Verbose sub-process logging is super useful in production environemnts, however, IT IS
JAW DROPPING HOW OFTEN VERBOSE LOGGING HELPS ME WHILE DEVELOPING THE AUTO-
MATION CODE.

2. Once the solution is in production, I get less calls because those who run into problems

#PSBlogWeek 23

0x8024200B / 2149851147 => A hardware update (driver) was not able to be installed. Win-
dows Update Troubleshooter

0x80070020 / 2147942432 = The process cannot access the file because it is being used by
another process => Windows update is unable to update specific files due to locking or
antivirus. Troubleshooting Guide, Windows Update Troubleshooter

0x80073712 / 2147956498 - The Windows Update component manifest is corrupted. Trou-
bleshooting Guide, Windows Update Troubleshooter

0x80004005 / 2147500037 - Corrupt or missing files in the OS.Reseting Windows Update
Components, Windows Update Troubleshooter

0x8024402F / 2149859375 - windows update is having trouble contacting Microsoft servers
- could be network settings.

0x80070643 / 2147944003 - problems installing .NET framework update. Troubleshooting
Guide Windows Update Troubleshooter

Comprehensive List of Windows Update Errors

Comprehensive Windows Update Error List

Additional Links

Reseting Windows Update Components
Windows Update Troubleshooter

#PSBlogWeek i

Creating Storage Reports With
PowerShell

Joshua King
Follow on Twitter @windosnz

#PSBlogWeek 25

In your environment, you may have monitoring tools that fire off emails when
a drive has reached certain usage thresholds, or you may have other tools
calculating these trends.

This is great, but sometimes it’s helpful to have a script you can run to get a
quick overview of all your servers’ hard drives at a particular point in
time—whether they’re nearly empty, nearly full, or somewhere in-between.
Of course, it helps if the output can be fed down the PowerShell pipeline into
other scripts.

Too long; won’t read
If you hadn’t guessed, this post will be discussing a complete script. I’m sure
some readers won’t need my explanation to understand the how’s and
why’s of it. But if you’re wanting to skip to “the goods,” you can check out
the Gist.

For everyone else, know that I’ll be deviating from how I normally do these
types of posts. Instead of reading through the finished script line by line, I’ll be
talking about the logical flow of how it was built.

This may result in parts not fitting together right away, but I promise it will all
fall into place by the end.

Herding the servers
The first thing to sort out is getting a collection of all of our servers. Strictly
speaking, our script should take this list as an input, allowing us to tweak the
list each time the report is run. However, I run this script the same way every
time and have elected to “hard code” the generation of this collection.

$OrgUnit = 'OU=servers,OU=computers,OU=corp,DC=example,DC=com'
$Servers = Get-ADComputer -Filter {(OperatingSystem -like '*Server*') -and (Enabled -eq $True)} -SearchBase $OrgUnit -Properties ManagedBy

That seems like a lot for a simple task, right?

It sure is. I’m being a little over the top with the filtering, but I like doing it all up-
front to save some post-processing later.

But what is all of that filtering actually doing?

Firstly, providing an Organizational Unit to the SearchBase parameter means
that we’re only looking for computer accounts within that location. There’s
no point in grabbing all of our workstations, laptops, and VDI instances when
we don’t care about them.

The other filtering means we’re only getting accounts that are enabled and
whose Operating System name contains the word “Server.” This will match
things like “Windows Server 2012 R2,” meaning I only get our servers and not
workstations that have accidentally ended up in the wrong container.

The last thing you’ll notice is that we’re requesting the ManagedBy property.
This is so I know who the caretaker of each server is. Armed with a name, I
can tap them on the shoulder—or more likely send them an automated
email—if I notice a drive that they should be keeping an eye on is nearly full.

Gathering the disks
Now that we have our servers sorted, we need to do a little digging regard-
ing each local disk attached to them. For this, we’ll be querying WMI and
then combining the resultant information with details about the parent
server.

You’ll note that we’re using splatting for Get-WmiObject, a technique where
you supply parameters to a cmdlet via a hash table. Other than helping to
avoid long line length, it’s not truly necessary in this case. It is, however, what
I prefer to do when using many parameters at once, and it’s a good habit to
get into.

The parameters themselves are fairly standard. Filtering on DriveType 3
means we’re only going to be getting local disks, as opposed to network or
removable ones. In my environment, we used to create disks specifically for
page files. Not many of them exist anymore, but if they do, I don’t want to
see them in this report. So, we’re filtering them out based on the standard
name we gave them.

Creating Storage
Reports With PowerShell

#PSBlogWeek

In your environment, you may have monitoring tools that fire off emails when
a drive has reached certain usage thresholds, or you may have other tools
calculating these trends.

This is great, but sometimes it’s helpful to have a script you can run to get a
quick overview of all your servers’ hard drives at a particular point in
time—whether they’re nearly empty, nearly full, or somewhere in-between.
Of course, it helps if the output can be fed down the PowerShell pipeline into
other scripts.

Too long; won’t read
If you hadn’t guessed, this post will be discussing a complete script. I’m sure
some readers won’t need my explanation to understand the how’s and
why’s of it. But if you’re wanting to skip to “the goods,” you can check out
the Gist.

For everyone else, know that I’ll be deviating from how I normally do these
types of posts. Instead of reading through the finished script line by line, I’ll be
talking about the logical flow of how it was built.

#PSBlogWeek 26

This may result in parts not fitting together right away, but I promise it will all
fall into place by the end.

Herding the servers
The first thing to sort out is getting a collection of all of our servers. Strictly
speaking, our script should take this list as an input, allowing us to tweak the
list each time the report is run. However, I run this script the same way every
time and have elected to “hard code” the generation of this collection.

$OrgUnit = 'OU=servers,OU=computers,OU=corp,DC=example,DC=com'
$Servers = Get-ADComputer -Filter {(OperatingSystem -like '*Server*') -and (Enabled -eq $True)} -SearchBase $OrgUnit -Properties ManagedBy

That seems like a lot for a simple task, right?

It sure is. I’m being a little over the top with the filtering, but I like doing it all up-
front to save some post-processing later.

But what is all of that filtering actually doing?

Firstly, providing an Organizational Unit to the SearchBase parameter means
that we’re only looking for computer accounts within that location. There’s
no point in grabbing all of our workstations, laptops, and VDI instances when
we don’t care about them.

The other filtering means we’re only getting accounts that are enabled and
whose Operating System name contains the word “Server.” This will match
things like “Windows Server 2012 R2,” meaning I only get our servers and not
workstations that have accidentally ended up in the wrong container.

The last thing you’ll notice is that we’re requesting the ManagedBy property.
This is so I know who the caretaker of each server is. Armed with a name, I
can tap them on the shoulder—or more likely send them an automated
email—if I notice a drive that they should be keeping an eye on is nearly full.

Gathering the disks
Now that we have our servers sorted, we need to do a little digging regard-
ing each local disk attached to them. For this, we’ll be querying WMI and
then combining the resultant information with details about the parent
server.

You’ll note that we’re using splatting for Get-WmiObject, a technique where
you supply parameters to a cmdlet via a hash table. Other than helping to
avoid long line length, it’s not truly necessary in this case. It is, however, what
I prefer to do when using many parameters at once, and it’s a good habit to
get into.

The parameters themselves are fairly standard. Filtering on DriveType 3
means we’re only going to be getting local disks, as opposed to network or
removable ones. In my environment, we used to create disks specifically for
page files. Not many of them exist anymore, but if they do, I don’t want to
see them in this report. So, we’re filtering them out based on the standard
name we gave them.

In your environment, you may have monitoring tools that fire off emails when
a drive has reached certain usage thresholds, or you may have other tools
calculating these trends.

This is great, but sometimes it’s helpful to have a script you can run to get a
quick overview of all your servers’ hard drives at a particular point in
time—whether they’re nearly empty, nearly full, or somewhere in-between.
Of course, it helps if the output can be fed down the PowerShell pipeline into
other scripts.

Too long; won’t read
If you hadn’t guessed, this post will be discussing a complete script. I’m sure
some readers won’t need my explanation to understand the how’s and
why’s of it. But if you’re wanting to skip to “the goods,” you can check out
the Gist.

For everyone else, know that I’ll be deviating from how I normally do these
types of posts. Instead of reading through the finished script line by line, I’ll be
talking about the logical flow of how it was built.

This may result in parts not fitting together right away, but I promise it will all
fall into place by the end.

Herding the servers
The first thing to sort out is getting a collection of all of our servers. Strictly
speaking, our script should take this list as an input, allowing us to tweak the
list each time the report is run. However, I run this script the same way every
time and have elected to “hard code” the generation of this collection.

$OrgUnit = 'OU=servers,OU=computers,OU=corp,DC=example,DC=com'
$Servers = Get-ADComputer -Filter {(OperatingSystem -like '*Server*') -and (Enabled -eq $True)} -SearchBase $OrgUnit -Properties ManagedBy

That seems like a lot for a simple task, right?

It sure is. I’m being a little over the top with the filtering, but I like doing it all up-
front to save some post-processing later.

But what is all of that filtering actually doing?

Firstly, providing an Organizational Unit to the SearchBase parameter means
that we’re only looking for computer accounts within that location. There’s
no point in grabbing all of our workstations, laptops, and VDI instances when
we don’t care about them.

The other filtering means we’re only getting accounts that are enabled and
whose Operating System name contains the word “Server.” This will match
things like “Windows Server 2012 R2,” meaning I only get our servers and not
workstations that have accidentally ended up in the wrong container.

The last thing you’ll notice is that we’re requesting the ManagedBy property.
This is so I know who the caretaker of each server is. Armed with a name, I
can tap them on the shoulder—or more likely send them an automated
email—if I notice a drive that they should be keeping an eye on is nearly full.

#PSBlogWeek 27

Gathering the disks
Now that we have our servers sorted, we need to do a little digging regard-
ing each local disk attached to them. For this, we’ll be querying WMI and
then combining the resultant information with details about the parent
server.

You’ll note that we’re using splatting for Get-WmiObject, a technique where
you supply parameters to a cmdlet via a hash table. Other than helping to
avoid long line length, it’s not truly necessary in this case. It is, however, what
I prefer to do when using many parameters at once, and it’s a good habit to
get into.

The parameters themselves are fairly standard. Filtering on DriveType 3
means we’re only going to be getting local disks, as opposed to network or
removable ones. In my environment, we used to create disks specifically for
page files. Not many of them exist anymore, but if they do, I don’t want to
see them in this report. So, we’re filtering them out based on the standard
name we gave them.

#PSBlogWeek 28

Now, for each disk, let’s wrap up the information we’ve got into a neat
custom object. Most of the properties we’re just pulling through directly from
the $Disk object. (ComputerName and ManagedBy are coming from the
ADComputer object, more on that later.)

Size and SizeGB are two different representations of the same thing; the first
measuring the size of a disk in bytes and the second being converted into
gigabytes. PowerShell has a nice shorthand for doing this conversion: simply
divide the byte value by “1GB,” and this works for other units too. We’re
rounding the resulting figure, as conversions like this can tend to end up with
many decimal places.

You may be wondering why [Ordered] is slotted in there between [PSCusto-
mObject] and the hash table defining its properties. By default, hash tables
don’t have a set order, so even though Usage is defined last, it might end up
being displayed first. This is normally fine, but, in this case, I want some control
over the output of this script, and [Ordered] is how you tell PowerShell that
the order is to be preserved.

Finally, the Usage property is using my PoshPctBar module to display disk
usage in a graphical form (for example: [▓▓........]). This is optional and
requires installing the module, but I find having this included allows me to
quickly pick out problem disks.

What about errors?!
Good catch (pun intended)!

You never know what might cause it—whether it’s that you don’t have per-
mission on the remote server or WMI isn’t responding for whatever rea-
son—but from time to time Get-WmiObject may generate an error instead of
“useful” output.

The eagle-eyed reader out there would have noted that the code snippet in
the previous section included setting the error action for the WMI cmdlet to
“stop.” This is to ensure that any errors from that cmdlet are “terminating”

#PSBlogWeek 29

and will be caught using try/catch.

To get some workable error handling, wrap the previous snippet in a “try”
block, and then we’ll be able to mitigate them in a “catch” block.

With this catch block, we’re creating an object with the same properties as
what we previously created. This means they’ll seamlessly output alongside
our “working” objects, but with enough information included so that we
know which server the error occurred on, and what the message of the error
was. The message is just a string and is being included in the Usage property,
which is normally a string anyway.

In the context of a catch block, $_ changes to the error that caused the
block to trigger. This is why ComputerName and ManagedBy are being sup-
plied as their own variable, rather than properties of a parent object as you
might expect to see them.

My screen isn’t that wide!
At this point, we’ve got a lot of properties for each disk—and a few of them
are just two different ways of seeing the same value. By default, when there
are this many properties, PowerShell will opt to output this information as a list
rather than a nicely formatted table.

Ever notice how you’ll often run a cmdlet and only see a subset of the infor

#PSBlogWeek 30

mation available unless you pipe the output to Select-Object *?

We’re able to do the same thing with our custom objects by specifying a
“Default Display Property Set.” In short, we’ll be telling PowerShell: “Unless I
say otherwise, I only want to see this handful of properties.”

But first, we need to establish which properties we want to see:

$DefaultDisplaySet = 'ComputerName', 'DriveLetter', 'SizeGB', 'Usage'
$DefaultDisplayPropertySet = New-Object System.Management.Automation.PSPropertySet(‘DefaultDisplayPropertySet', [String[]] $DefaultDisplaySet)
$PSStandardMembers = [System.Management.Automation.PSMemberInfo[]]@($DefaultDisplayPropertySet)

Then, we need to “apply” this to each of our objects before pushing them
down the pipeline:

Four is the magic number when PowerShell is deciding between a list or a
table. We’ll now only see ComputerName, DriveLetter, SizeGB, Usage unless
we decide otherwise. The data is still there if we need it.

This is going to take forever to run in
my environment!
It probably would if you were to just iterate through each server one at a
time. Luckily, there are a few options for running these tasks against more
than one target at any given moment.

My go-to for this is PoshRSJob. I use it all the time (perhaps too often). This
module simplifies the creation of runspaces, to the point where you barely
have to think about (or understand) them.

Most of the previous code, everything except generating a list of servers, gets
wrapped up into a script block variable (executable code stored in a vari-

#PSBlogWeek 31

able, similar to a function). As a habit, I refer to this variable as $JobBlock.

One thing you’ll note here is the use of $_, which denotes the current server.
As mentioned above, some properties that we’ll potentially need inside our
catch block are being stored as independent variables.

ManagedBy has a little bit of string manipulation going on to make the
output more useful for me. In my case, I only want to know the name of the
user, rather than their full distinguished name. You may want to adjust this if
you require different information.

You’ll also notice that we’re checking to make sure that each server is online
by pinging it once before attempting to gather disk info. This works in my en-
vironment because the servers are configured to respond to my workstation.

To get the ball rolling, simply pipe your collection of servers into the PoshRS-
Job functions as shown:

$Servers | Select-Object * | Start-RSJob -ScriptBlock $JobBlock -Name {$_.Name} | Wait-RSJob -ShowProgress | Receive-RSJob

The servers are going through Select-Object so that the ManagedBy proper-
ty is available. Start-RSJob is the function doing the heavy lifting of getting our
task done; it’s passing each server object into our script block, and the con-
tent of the script block is running through for each of them. Just in case, we’re
naming each job after the name of the given server, allowing us to trouble-
shoot if anything goes wrong.

#PSBlogWeek 32

Generally, starting a bunch of jobs would just do that—start the jobs and then
return control to you so that you can keep working while they complete in
the background. That’s not what I actually want to happen with this script, so
we use the Wait-RSJob function to prevent ourselves from performing other
actions until they all complete (or fail), and the ShowProgress switch will give
us a visual indicator of how many jobs have completed.

Finally, Receive-RSJob will collect the resultant output from each job.

The proof is in the pudding
I’ve not actually shown you any output from all of this yet; it seemed a little
premature until it all comes together at the end.

Make sure you have a look at the final product all stitched together,
wrapped up as a function with some comment-based help.

But, how do you actually use the thing?

First, just run it directly and view the output inside your PowerShell host:

Next, pop the output into a variable for further manipulation:

#PSBlogWeek 33

From here, it’s up to you to tweak as you see fit.

Final thoughts
That was a long journey, looking back at this post, but I hope the result was
worth it. Working through this covered a number of topics, and given how
many of them there were, I couldn’t dive into them all as deeply as I might
have liked to.

If there’s a specific topic you want covered in more detail in a follow-up post,
please let me know here or on Twitter.

And finally, please check out the other #PSBlogWeek posts, and follow the
hashtag to find other useful PowerShell content!

#PSBlogWeek i

Using Desired State Configuration
(DSC) Composite Resources

Josh Duffney
Follow on Twitter @joshduffney

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

35

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

#PSBlogWeek

Using Desired State Configuration
(DSC) Composite Resources

#PSBlogWeek

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

#PSBlogWeek 36

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

#PSBlogWeek 37

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

#PSBlogWeek 38

Creating Composite Resources
At this point, we have a baseline configuration we want to condense—that’s
the problem we’re trying to solve with a composite resource. So we have the
configuration code, but how do we create a composite resource? Luckily,
someone has already solved that problem by creating a helper function that
generates the composite resource for you. The helper function can be found
on GitHub, and it’s called New-DscCompositeResource. After you look at the
code, you’ll notice several parameters, but the important ones are -Path,
-ModuleName, and -ResourceName. All are self explanatory, but make sure
you specify a $env:psmodulepath for the path so the resource can be used.

Be sure to load the helper function New-DscCompositeResource in to
memory before running the below code

After running the code above, you should see the same folder structure as
shown below in the tree output screenshot.

You’ve now got a composite resource, but it won’t do anything because
we’ve not added any logic into the composite resources themselves. The
composite resource I created for the web server baseline is called Web-

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

#PSBlogWeek 39

ServerBaseline. To update that resource, I have to edit the WebServerBase-
line.schema.psm1 file. When you open it, the code should look like the con-
figuration shown below.

At the moment, it’s an empty configuration called WebServerBaseline. Since
we already have the DSC code required for this composite, we can simply
copy and paste it in. However, there is one change we have to make to the
DSC configuration before it can be used in this composite resource. In order
for it to work, we have to remove the node block from the configuration. If
we don’t, we’ll get an error when trying to compile the MOF.

After removing the node block, the WebServerBaseline.schema.psm1 file
should look exactly like the code snippet below.

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

#PSBlogWeek 40

Using Composite Resources
Now that we’ve updated the WebServerBaseline composite resource, it’s

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

#PSBlogWeek 41

now time to write a new DSC configuration that uses that composite
resource. For this example, I’ll name the new configuration UsingACompos-
ite. The first thing you should do is import the composite module. You do that
the same way as you would a normal DSC resource module with the
Import-DscResource cmdlet. Right after the Import-DscResource cmdlet,
create a node block. I’ll just specify local host for my node. Inside the node
block is where you declare the composite resource you want to use. In our
case, it is WebServerBaseline. Now the next part might throw you off a bit.
Inside the WebServerBaseline resource, I do not define any properties. I’ll get
to why in a minute, but if you take a look at the syntax for the WebServer-
Baseline resource Get-DscResource webserverbaseline -Syntax, you’ll notice
there are only two options: DependsOn and PsDscRunAsCredential. Both of
those are optional, and I don’t need to specify them in my configuration; it
will work without them. Notice that the configuration is only 10 lines now, not
45?

The next thing to do is to apply the configuration to make sure it executes
properly. To do that, you must load the configuration into memory, generate
the MOF document, and then apply the configuration. For this example, I’ll
just use Push mode and issue a Start-DscConfiguration command. I have the
UsingAComposite.ps1 file saved on my target machine, so I can just dot
source it in if I have the configuration open in vscode, or I can just load it into
memory there. Once the configuration is loaded, I can generate the MOF file
by calling the configuration. I specified the outputpath parameter because
I wanted to specify the directory the MOF would end up in. After that, apply
the configuration to your target server. As I mentioned, I’ll do this with the
Start-DscConfiguration cmdlet.

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

#PSBlogWeek 42

Adding Properties to a Composite
Resource
Typically, DSC resources have at least one mandatory property, but the
WebServerBaseline composite resource we wrote doesn’t. The reason for
that is I didn’t include any mandatory parameters in the composite configu-
ration when I updated the WebServerBaseline.schema.psm1 file. Parameters
are how you create both optional and mandatory properties for your com-
posite resources. In order for us to create a mandatory property, we’ll have
to update the WebServerBaseline.schema.psm1 file with a parameter. As an
example, let’s say Globomantics isn’t the only possible app pool name for a
web server baseline. Therefore, we want to make that a value we can input
as a parameter, but we also want to make it mandatory because the config-
uration will fail without it. In order to do that, we simply add a mandatory pa-
rameter to the WebServerBaseline.schema.psm1 file called $AppPoolName.

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

#PSBlogWeek 43

Now, when I run Get-DscResource webserverbaseline -Syntax, I see a new
property called AppPoolName

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

#PSBlogWeek 44

Because we updated the composite resource, we of course have to update
our DSC configuration that uses that composite resource:

And lastly, if we want to apply this new configuration, we’ll have to re-load
the configuration into memory, generate a MOF document, and then apply
the configuration. The only change should be to add a new app pool with
the name of AnyAppPoolName.

To check if the app pool got created, import the WebAdministration module
and get the contents of IIS:\AppPools:

Composite resources can be thought of as help functions, but instead of
helper functions for your PowerShell scripts it’s a helper resource for your DSC
configurations. They help solve the same problem helper functions do by
modularizing your code. Which reduces the length and complexity of your
code. Here is a comparison between a DSC configuration one without using
a composite resource and with using a composite resource. As you can
probably guess the shorter configuration is the one using a composite
resource. Taking some of the logic out of the main DSC configuration helps
you maintain the code by breaking it apart.

Understanding Composite
Resource
Composite resources work just like mof based resources. They must be
placed in the $env:psmodulepath to be used, they even follow a similar
folder structure–where you have a resource module folder and then all the
resources themselves living under a sub folder called DSCResources. The
main difference between a composite and a mof based resource is a com-
posite resource uses a .schema.psm1 file instead of a normal PowerShell
module .psm1 file. Composite resource still contain a .psd1 as a manifest, but
that simply points to the .schema.psm1.

In the example below, the resource module is called CompositeModule,
which is the top-level folder. Under that folder is the CompositeModule.psd1
file, which is the module manifest for the composite module. At the root of
the CompositeModule folder is a directory called DSCResources. If you have
written DSC resources before, this folder will look familiar. This is the directory
that contains all the actual DSC resources and code responsible for making
the DSC configuration work. Each composite resource you create will exist
under this folder. In the example shown above, there is only one composite
resource with the name CompositeResource. Inside that directory are two
files: CompositeResource.psd1 and CompositeResource.schema.psm1.
CompositeResource.psd1 is the manifest for the composite resource, and
the CompositeResource.schema.psm1 file is where all the code goes for your
composite resource.

• CompositeModule
• CompositeModule.psd1
• DSCResources

• CompositeResource
• CompositeResource.psd1
• CompositeResource.schema.psm1

DSC Without a Composite Resource
Now that you have an understanding of what makes up a composite
resource, let’s take a look at what a normal DSC configuration looks like. For
this example, I have a web server baseline configuration. It uses the built-in
DSC module, PSDesiredStateConfiguration, and a custom DSC resource
module, xWebAdministration. Since this configuration is a baseline, it needs
to be applied to every web server in the environment. However, I have differ-
ent types of web servers, so this section of code is repeated over and over
again in several separate configurations. Just like when writing PowerShell
functions or modules, you should condense repeated code if possible, and
that’s what a composite resource allows us to do.

#PSBlogWeek 45

Summary
In the end it is up to you to decide if you want to use DSC composite resourc-
es or not. They have their advantages as you’ve seen in this post, but they
also have a disadvantage. Which is another set of code in this case a com-
posite PowerShell module that needs deployed to all your target nodes.

#PSBlogWeek i

Migration of SQL Server
With PowerShell dbatools

Volker Bachmann
Follow on Twitter @VolkerBachmann

#PSBlogWeek 47

This article is about server management with PowerShell and is part of the
#PSBlogWeek series (http://psblogweek.com) , created by Adam Bertram.

Index:

1. Introduction to dbatools
2. Migration Prerequisites
3. Best Practices
4. Migration
5. References

It is also part of my blog series about migrating our physical SQL Server to a
VMware Environment. For now, all of these articles are in German only – sorry.
The first three articles describe the basic server configuration, installation,
and VM guest configuration of the VMware Environment. This article de-
scribes the migration itself.
I’ll write a recap of the whole series in English later on.

1. Introduction to dbatools

I got in contact with PowerShell some years ago, but I wasn’t satisfied with
what needed to be done to maintain SQL Server.

However, Microsoft has made a lot of improvements since then, and with

contributions from several PowerShell Experts and MVPs – such as Chrissy
LeMaire, Claudio Silva, Rob Sewell, Constantine Kokkinos and many more,
there is now a module that helps to maintain SQL Server 2005+. It’s called
dbatools, and you can find it here https://dbatools.io. The project is hosted
on GitHub and the module is available totally free of charge!

The dbatools community has grown to over 50 contributors with more than
300 SQL Server best practice, administration and migration commands. An
overview of the commands can be found here: https://dbatools.io/func-
tions/.

2. Migration Prerequisites

Now, let’s turn our attention to the prerequisites for the migration of a physi-
cal SQL Server 2008 to a VMware-based SQL Server 2016 on Windows Server
2016. The positive thing here was that there was no need to reinstall every-
thing on the same physical hardware over the weekend. Instead, we
bought a totally new VMware Environment with three Dell servers, two net-
work switches, and new storage. There was enough time to test the new SQL
Server, the SAN, and build a good configuration for the virtual machines.
Most of the VM configuration is based on the blog series „Stairway to Server
Virtualization“ by David Klee, which can be found on SQL Server Central.

For migration purposes, we installed an additional Windows Server 2016 with
PowerShell 5, with SQL Server 2016 as an admin workstation. On the SQL
Server, we installed the dbatools by using the easy install-module command:

During installation, you may get a confirmation dialog prompting you to
accept installation of the NuGet Package Manager. You should accept;
otherwise, you’ll need another installation option. These options are de-
scribed on the dbatools website: https://dbatools.io/download.

The dbatools module is in permanent development – meanwhile, they are
near the first major release 1.0 – so you should check for the latest version and
update often. Updating is as easy as the installation:

On the screenshot we see five versions of the tools installed, so we have to
activate the latest version with the comand import-module.

With the last command above you get a quick overview of all the dbatools
commands.

After installation of the base SQL Server VM we need to check some basic
configuration options first. dbatools can help us with this as well.

All commands are created by experts with references to the corresponding
articles where the code comes from.

3. Best Practices

• Max Memory
• Test-DbaMaxMemory

Migration of SQL Server
With PowerShell dbatools

#PSBlogWeek

This article is about server management with PowerShell and is part of the
#PSBlogWeek series (http://psblogweek.com) , created by Adam Bertram.

Index:

1. Introduction to dbatools
2. Migration Prerequisites
3. Best Practices
4. Migration
5. References

It is also part of my blog series about migrating our physical SQL Server to a
VMware Environment. For now, all of these articles are in German only – sorry.
The first three articles describe the basic server configuration, installation,
and VM guest configuration of the VMware Environment. This article de-
scribes the migration itself.
I’ll write a recap of the whole series in English later on.

1. Introduction to dbatools

I got in contact with PowerShell some years ago, but I wasn’t satisfied with
what needed to be done to maintain SQL Server.

However, Microsoft has made a lot of improvements since then, and with

#PSBlogWeek 48

contributions from several PowerShell Experts and MVPs – such as Chrissy
LeMaire, Claudio Silva, Rob Sewell, Constantine Kokkinos and many more,
there is now a module that helps to maintain SQL Server 2005+. It’s called
dbatools, and you can find it here https://dbatools.io. The project is hosted
on GitHub and the module is available totally free of charge!

The dbatools community has grown to over 50 contributors with more than
300 SQL Server best practice, administration and migration commands. An
overview of the commands can be found here: https://dbatools.io/func-
tions/.

2. Migration Prerequisites

Now, let’s turn our attention to the prerequisites for the migration of a physi-
cal SQL Server 2008 to a VMware-based SQL Server 2016 on Windows Server
2016. The positive thing here was that there was no need to reinstall every-
thing on the same physical hardware over the weekend. Instead, we
bought a totally new VMware Environment with three Dell servers, two net-
work switches, and new storage. There was enough time to test the new SQL
Server, the SAN, and build a good configuration for the virtual machines.
Most of the VM configuration is based on the blog series „Stairway to Server
Virtualization“ by David Klee, which can be found on SQL Server Central.

For migration purposes, we installed an additional Windows Server 2016 with
PowerShell 5, with SQL Server 2016 as an admin workstation. On the SQL
Server, we installed the dbatools by using the easy install-module command:

During installation, you may get a confirmation dialog prompting you to
accept installation of the NuGet Package Manager. You should accept;
otherwise, you’ll need another installation option. These options are de-
scribed on the dbatools website: https://dbatools.io/download.

The dbatools module is in permanent development – meanwhile, they are
near the first major release 1.0 – so you should check for the latest version and
update often. Updating is as easy as the installation:

On the screenshot we see five versions of the tools installed, so we have to
activate the latest version with the comand import-module.

With the last command above you get a quick overview of all the dbatools
commands.

After installation of the base SQL Server VM we need to check some basic
configuration options first. dbatools can help us with this as well.

All commands are created by experts with references to the corresponding
articles where the code comes from.

3. Best Practices

• Max Memory
• Test-DbaMaxMemory

This article is about server management with PowerShell and is part of the
#PSBlogWeek series (http://psblogweek.com) , created by Adam Bertram.

Index:

1. Introduction to dbatools
2. Migration Prerequisites
3. Best Practices
4. Migration
5. References

It is also part of my blog series about migrating our physical SQL Server to a
VMware Environment. For now, all of these articles are in German only – sorry.
The first three articles describe the basic server configuration, installation,
and VM guest configuration of the VMware Environment. This article de-
scribes the migration itself.
I’ll write a recap of the whole series in English later on.

1. Introduction to dbatools

I got in contact with PowerShell some years ago, but I wasn’t satisfied with
what needed to be done to maintain SQL Server.

However, Microsoft has made a lot of improvements since then, and with

contributions from several PowerShell Experts and MVPs – such as Chrissy
LeMaire, Claudio Silva, Rob Sewell, Constantine Kokkinos and many more,
there is now a module that helps to maintain SQL Server 2005+. It’s called
dbatools, and you can find it here https://dbatools.io. The project is hosted
on GitHub and the module is available totally free of charge!

The dbatools community has grown to over 50 contributors with more than
300 SQL Server best practice, administration and migration commands. An
overview of the commands can be found here: https://dbatools.io/func-
tions/.

2. Migration Prerequisites

Now, let’s turn our attention to the prerequisites for the migration of a physi-
cal SQL Server 2008 to a VMware-based SQL Server 2016 on Windows Server
2016. The positive thing here was that there was no need to reinstall every-
thing on the same physical hardware over the weekend. Instead, we
bought a totally new VMware Environment with three Dell servers, two net-
work switches, and new storage. There was enough time to test the new SQL
Server, the SAN, and build a good configuration for the virtual machines.
Most of the VM configuration is based on the blog series „Stairway to Server
Virtualization“ by David Klee, which can be found on SQL Server Central.

For migration purposes, we installed an additional Windows Server 2016 with
PowerShell 5, with SQL Server 2016 as an admin workstation. On the SQL
Server, we installed the dbatools by using the easy install-module command:

During installation, you may get a confirmation dialog prompting you to
accept installation of the NuGet Package Manager. You should accept;
otherwise, you’ll need another installation option. These options are de-
scribed on the dbatools website: https://dbatools.io/download.

#PSBlogWeek 49

The dbatools module is in permanent development – meanwhile, they are
near the first major release 1.0 – so you should check for the latest version and
update often. Updating is as easy as the installation:

On the screenshot we see five versions of the tools installed, so we have to
activate the latest version with the comand import-module.

With the last command above you get a quick overview of all the dbatools
commands.

After installation of the base SQL Server VM we need to check some basic
configuration options first. dbatools can help us with this as well.

All commands are created by experts with references to the corresponding
articles where the code comes from.

3. Best Practices

• Max Memory
• Test-DbaMaxMemory

This article is about server management with PowerShell and is part of the
#PSBlogWeek series (http://psblogweek.com) , created by Adam Bertram.

Index:

1. Introduction to dbatools
2. Migration Prerequisites
3. Best Practices
4. Migration
5. References

It is also part of my blog series about migrating our physical SQL Server to a
VMware Environment. For now, all of these articles are in German only – sorry.
The first three articles describe the basic server configuration, installation,
and VM guest configuration of the VMware Environment. This article de-
scribes the migration itself.
I’ll write a recap of the whole series in English later on.

1. Introduction to dbatools

I got in contact with PowerShell some years ago, but I wasn’t satisfied with
what needed to be done to maintain SQL Server.

However, Microsoft has made a lot of improvements since then, and with

contributions from several PowerShell Experts and MVPs – such as Chrissy
LeMaire, Claudio Silva, Rob Sewell, Constantine Kokkinos and many more,
there is now a module that helps to maintain SQL Server 2005+. It’s called
dbatools, and you can find it here https://dbatools.io. The project is hosted
on GitHub and the module is available totally free of charge!

The dbatools community has grown to over 50 contributors with more than
300 SQL Server best practice, administration and migration commands. An
overview of the commands can be found here: https://dbatools.io/func-
tions/.

2. Migration Prerequisites

Now, let’s turn our attention to the prerequisites for the migration of a physi-
cal SQL Server 2008 to a VMware-based SQL Server 2016 on Windows Server
2016. The positive thing here was that there was no need to reinstall every-
thing on the same physical hardware over the weekend. Instead, we
bought a totally new VMware Environment with three Dell servers, two net-
work switches, and new storage. There was enough time to test the new SQL
Server, the SAN, and build a good configuration for the virtual machines.
Most of the VM configuration is based on the blog series „Stairway to Server
Virtualization“ by David Klee, which can be found on SQL Server Central.

For migration purposes, we installed an additional Windows Server 2016 with
PowerShell 5, with SQL Server 2016 as an admin workstation. On the SQL
Server, we installed the dbatools by using the easy install-module command:

During installation, you may get a confirmation dialog prompting you to
accept installation of the NuGet Package Manager. You should accept;
otherwise, you’ll need another installation option. These options are de-
scribed on the dbatools website: https://dbatools.io/download.

The dbatools module is in permanent development – meanwhile, they are
near the first major release 1.0 – so you should check for the latest version and
update often. Updating is as easy as the installation:

On the screenshot we see five versions of the tools installed, so we have to
activate the latest version with the comand import-module.

With the last command above you get a quick overview of all the dbatools
commands.

After installation of the base SQL Server VM we need to check some basic
configuration options first. dbatools can help us with this as well.

All commands are created by experts with references to the corresponding
articles where the code comes from.

3. Best Practices

• Max Memory
• Test-DbaMaxMemory

#PSBlogWeek 50

• This tests the actual max memory setting against the
recommended setting.

 •

 •

TempDB

• Test-DbaTempDbConfiguration
• With SQL Server 2016, you get the option to configure the

tempdb configuration during installation, but not with older ver
sions. With this command, you can control and later adjust it.

• Evaluates tempdb against a set of rules to match best practices.
The rules are:
– TF 1118 Enabled: Is Trace Flag 1118 enabled? (See KB328551)

 – File Count: Does the count of data files in tempdb match the
 number of logical cores, up to 8?

– File Growth: Are any files set to have percentage growth? Best
 practice is that all files have an explicit growth value.

– File Location: Is tempdb located on the C:\ drive? Best prac
 tice says to locate it elsewhere.

– File MaxSize Set (optional): Do any files have a max size value?
 Max size could cause tempdb problems if it isn’t allowed to grow.

This article is about server management with PowerShell and is part of the
#PSBlogWeek series (http://psblogweek.com) , created by Adam Bertram.

Index:

1. Introduction to dbatools
2. Migration Prerequisites
3. Best Practices
4. Migration
5. References

It is also part of my blog series about migrating our physical SQL Server to a
VMware Environment. For now, all of these articles are in German only – sorry.
The first three articles describe the basic server configuration, installation,
and VM guest configuration of the VMware Environment. This article de-
scribes the migration itself.
I’ll write a recap of the whole series in English later on.

1. Introduction to dbatools

I got in contact with PowerShell some years ago, but I wasn’t satisfied with
what needed to be done to maintain SQL Server.

However, Microsoft has made a lot of improvements since then, and with

contributions from several PowerShell Experts and MVPs – such as Chrissy
LeMaire, Claudio Silva, Rob Sewell, Constantine Kokkinos and many more,
there is now a module that helps to maintain SQL Server 2005+. It’s called
dbatools, and you can find it here https://dbatools.io. The project is hosted
on GitHub and the module is available totally free of charge!

The dbatools community has grown to over 50 contributors with more than
300 SQL Server best practice, administration and migration commands. An
overview of the commands can be found here: https://dbatools.io/func-
tions/.

2. Migration Prerequisites

Now, let’s turn our attention to the prerequisites for the migration of a physi-
cal SQL Server 2008 to a VMware-based SQL Server 2016 on Windows Server
2016. The positive thing here was that there was no need to reinstall every-
thing on the same physical hardware over the weekend. Instead, we
bought a totally new VMware Environment with three Dell servers, two net-
work switches, and new storage. There was enough time to test the new SQL
Server, the SAN, and build a good configuration for the virtual machines.
Most of the VM configuration is based on the blog series „Stairway to Server
Virtualization“ by David Klee, which can be found on SQL Server Central.

For migration purposes, we installed an additional Windows Server 2016 with
PowerShell 5, with SQL Server 2016 as an admin workstation. On the SQL
Server, we installed the dbatools by using the easy install-module command:

During installation, you may get a confirmation dialog prompting you to
accept installation of the NuGet Package Manager. You should accept;
otherwise, you’ll need another installation option. These options are de-
scribed on the dbatools website: https://dbatools.io/download.

The dbatools module is in permanent development – meanwhile, they are
near the first major release 1.0 – so you should check for the latest version and
update often. Updating is as easy as the installation:

On the screenshot we see five versions of the tools installed, so we have to
activate the latest version with the comand import-module.

With the last command above you get a quick overview of all the dbatools
commands.

After installation of the base SQL Server VM we need to check some basic
configuration options first. dbatools can help us with this as well.

All commands are created by experts with references to the corresponding
articles where the code comes from.

3. Best Practices

• Max Memory
• Test-DbaMaxMemory

#PSBlogWeek 51

 •

 The right configuration can be set by using the corresponding
 Set- command

 A service restart is necessary after reconfiguration, see following
 screenshot:

 •

Disk
• Test-DbaDiskAlignment

• This command verifies that your non-dynamic disks are
aligned according to physical requirements.

• Test-DbaDiskAlignment -ComputerName sqlserver01| For
mat-Table

 •

• Test-DbaDiskAllocation

This article is about server management with PowerShell and is part of the
#PSBlogWeek series (http://psblogweek.com) , created by Adam Bertram.

Index:

1. Introduction to dbatools
2. Migration Prerequisites
3. Best Practices
4. Migration
5. References

It is also part of my blog series about migrating our physical SQL Server to a
VMware Environment. For now, all of these articles are in German only – sorry.
The first three articles describe the basic server configuration, installation,
and VM guest configuration of the VMware Environment. This article de-
scribes the migration itself.
I’ll write a recap of the whole series in English later on.

1. Introduction to dbatools

I got in contact with PowerShell some years ago, but I wasn’t satisfied with
what needed to be done to maintain SQL Server.

However, Microsoft has made a lot of improvements since then, and with

contributions from several PowerShell Experts and MVPs – such as Chrissy
LeMaire, Claudio Silva, Rob Sewell, Constantine Kokkinos and many more,
there is now a module that helps to maintain SQL Server 2005+. It’s called
dbatools, and you can find it here https://dbatools.io. The project is hosted
on GitHub and the module is available totally free of charge!

The dbatools community has grown to over 50 contributors with more than
300 SQL Server best practice, administration and migration commands. An
overview of the commands can be found here: https://dbatools.io/func-
tions/.

2. Migration Prerequisites

Now, let’s turn our attention to the prerequisites for the migration of a physi-
cal SQL Server 2008 to a VMware-based SQL Server 2016 on Windows Server
2016. The positive thing here was that there was no need to reinstall every-
thing on the same physical hardware over the weekend. Instead, we
bought a totally new VMware Environment with three Dell servers, two net-
work switches, and new storage. There was enough time to test the new SQL
Server, the SAN, and build a good configuration for the virtual machines.
Most of the VM configuration is based on the blog series „Stairway to Server
Virtualization“ by David Klee, which can be found on SQL Server Central.

For migration purposes, we installed an additional Windows Server 2016 with
PowerShell 5, with SQL Server 2016 as an admin workstation. On the SQL
Server, we installed the dbatools by using the easy install-module command:

During installation, you may get a confirmation dialog prompting you to
accept installation of the NuGet Package Manager. You should accept;
otherwise, you’ll need another installation option. These options are de-
scribed on the dbatools website: https://dbatools.io/download.

The dbatools module is in permanent development – meanwhile, they are
near the first major release 1.0 – so you should check for the latest version and
update often. Updating is as easy as the installation:

On the screenshot we see five versions of the tools installed, so we have to
activate the latest version with the comand import-module.

With the last command above you get a quick overview of all the dbatools
commands.

After installation of the base SQL Server VM we need to check some basic
configuration options first. dbatools can help us with this as well.

All commands are created by experts with references to the corresponding
articles where the code comes from.

3. Best Practices

• Max Memory
• Test-DbaMaxMemory

#PSBlogWeek 52

• Checks all disks on a computer to see if they are formatted
to 64k block size, the best practice for SQL Server disks.

• Test-DbaDiskAllocation -ComputerName sqlserver01 | For
mat-Table

 •

PowerPlan
• Test-DbaPowerPlan

• TThe Power Plan should be set to High Performance on
every SQL Server

• Test-DbaPowerPlan -ComputerName sqlserver01
 •

 SPN
• We use DNS CNAMEs for referring to our SQL Server (See the
article „Using Friendly Names for SQL Servers via DNS“ below). We
need to adjust the SPN settings manually. That is easy with these
commands: Get-DbaSpn and Set-DbaSPN

SQL Server Name
• We created a Single VM template where all SQL Server are
created from. With CPU, Memory and Disk Layout as described in
the Stairway I mentioned above (1).
• After creating a new VM out of the template the server name
changes but the internal SQL Server name does not. Help comes
again with dbatools command Repair-DbaServerName
Works fine for me!

This article is about server management with PowerShell and is part of the
#PSBlogWeek series (http://psblogweek.com) , created by Adam Bertram.

Index:

1. Introduction to dbatools
2. Migration Prerequisites
3. Best Practices
4. Migration
5. References

It is also part of my blog series about migrating our physical SQL Server to a
VMware Environment. For now, all of these articles are in German only – sorry.
The first three articles describe the basic server configuration, installation,
and VM guest configuration of the VMware Environment. This article de-
scribes the migration itself.
I’ll write a recap of the whole series in English later on.

1. Introduction to dbatools

I got in contact with PowerShell some years ago, but I wasn’t satisfied with
what needed to be done to maintain SQL Server.

However, Microsoft has made a lot of improvements since then, and with

contributions from several PowerShell Experts and MVPs – such as Chrissy
LeMaire, Claudio Silva, Rob Sewell, Constantine Kokkinos and many more,
there is now a module that helps to maintain SQL Server 2005+. It’s called
dbatools, and you can find it here https://dbatools.io. The project is hosted
on GitHub and the module is available totally free of charge!

The dbatools community has grown to over 50 contributors with more than
300 SQL Server best practice, administration and migration commands. An
overview of the commands can be found here: https://dbatools.io/func-
tions/.

2. Migration Prerequisites

Now, let’s turn our attention to the prerequisites for the migration of a physi-
cal SQL Server 2008 to a VMware-based SQL Server 2016 on Windows Server
2016. The positive thing here was that there was no need to reinstall every-
thing on the same physical hardware over the weekend. Instead, we
bought a totally new VMware Environment with three Dell servers, two net-
work switches, and new storage. There was enough time to test the new SQL
Server, the SAN, and build a good configuration for the virtual machines.
Most of the VM configuration is based on the blog series „Stairway to Server
Virtualization“ by David Klee, which can be found on SQL Server Central.

For migration purposes, we installed an additional Windows Server 2016 with
PowerShell 5, with SQL Server 2016 as an admin workstation. On the SQL
Server, we installed the dbatools by using the easy install-module command:

During installation, you may get a confirmation dialog prompting you to
accept installation of the NuGet Package Manager. You should accept;
otherwise, you’ll need another installation option. These options are de-
scribed on the dbatools website: https://dbatools.io/download.

The dbatools module is in permanent development – meanwhile, they are
near the first major release 1.0 – so you should check for the latest version and
update often. Updating is as easy as the installation:

On the screenshot we see five versions of the tools installed, so we have to
activate the latest version with the comand import-module.

With the last command above you get a quick overview of all the dbatools
commands.

After installation of the base SQL Server VM we need to check some basic
configuration options first. dbatools can help us with this as well.

All commands are created by experts with references to the corresponding
articles where the code comes from.

3. Best Practices

• Max Memory
• Test-DbaMaxMemory

#PSBlogWeek 53

4. Migration

• Now for the best part – the migration itself. You normally only need a single
command to migrate everything from one SQL Server to another. As de-
scribed in the Help documentation, this is a „one-button click“.
Start-DbaMigration -Source sql2014 -Destination sql2016 -BackupRestore
-NetworkShare \nas\sql\migration

• This migrates the follwing parts as listed below. Every part can be skipped
with a -no*** parameter as described in the Help documentation – for exam-
ple, use -NoLogins if you don’t want to transfer the logins.

• SQL Server configuration
• Custom errors (user-defined messages)
• SQL credentials
• Database mail
• User objects in system databases
• Central Management Server
• Backup devices
• Linked server
• System triggers
• Databases
• Logins
• Data collector collection sets
• Audits
• Server audit specifications
• Endpoints
• Policy management
• Resource Governor
• Extended Events
• JobServer = SQL Server Agent

• If any error comes up, use the functions, that are called out of the
Start-DbaMigration commands step by step.

• Keep in mind that the server configuration is also part of the migration, so
min and max memory and all other parameter in sp_configure are trans-

This article is about server management with PowerShell and is part of the
#PSBlogWeek series (http://psblogweek.com) , created by Adam Bertram.

Index:

1. Introduction to dbatools
2. Migration Prerequisites
3. Best Practices
4. Migration
5. References

It is also part of my blog series about migrating our physical SQL Server to a
VMware Environment. For now, all of these articles are in German only – sorry.
The first three articles describe the basic server configuration, installation,
and VM guest configuration of the VMware Environment. This article de-
scribes the migration itself.
I’ll write a recap of the whole series in English later on.

1. Introduction to dbatools

I got in contact with PowerShell some years ago, but I wasn’t satisfied with
what needed to be done to maintain SQL Server.

However, Microsoft has made a lot of improvements since then, and with

contributions from several PowerShell Experts and MVPs – such as Chrissy
LeMaire, Claudio Silva, Rob Sewell, Constantine Kokkinos and many more,
there is now a module that helps to maintain SQL Server 2005+. It’s called
dbatools, and you can find it here https://dbatools.io. The project is hosted
on GitHub and the module is available totally free of charge!

The dbatools community has grown to over 50 contributors with more than
300 SQL Server best practice, administration and migration commands. An
overview of the commands can be found here: https://dbatools.io/func-
tions/.

2. Migration Prerequisites

Now, let’s turn our attention to the prerequisites for the migration of a physi-
cal SQL Server 2008 to a VMware-based SQL Server 2016 on Windows Server
2016. The positive thing here was that there was no need to reinstall every-
thing on the same physical hardware over the weekend. Instead, we
bought a totally new VMware Environment with three Dell servers, two net-
work switches, and new storage. There was enough time to test the new SQL
Server, the SAN, and build a good configuration for the virtual machines.
Most of the VM configuration is based on the blog series „Stairway to Server
Virtualization“ by David Klee, which can be found on SQL Server Central.

For migration purposes, we installed an additional Windows Server 2016 with
PowerShell 5, with SQL Server 2016 as an admin workstation. On the SQL
Server, we installed the dbatools by using the easy install-module command:

During installation, you may get a confirmation dialog prompting you to
accept installation of the NuGet Package Manager. You should accept;
otherwise, you’ll need another installation option. These options are de-
scribed on the dbatools website: https://dbatools.io/download.

The dbatools module is in permanent development – meanwhile, they are
near the first major release 1.0 – so you should check for the latest version and
update often. Updating is as easy as the installation:

On the screenshot we see five versions of the tools installed, so we have to
activate the latest version with the comand import-module.

With the last command above you get a quick overview of all the dbatools
commands.

After installation of the base SQL Server VM we need to check some basic
configuration options first. dbatools can help us with this as well.

All commands are created by experts with references to the corresponding
articles where the code comes from.

3. Best Practices

• Max Memory
• Test-DbaMaxMemory

#PSBlogWeek 54

ferred. If you want to keep this settings as set by the best practices com-
mands, you should skip the configuration during transfer. Use -NoSpConfig-
ure!

• So what is missing in the moment?
• Most of the special parts of the additional services:

• SSIS
• SSAS
• SSRS

• You can test the whole migration with the -WhatIf parameter, which shows
what’s working and what isn’t. Sometimes the connection to the target com-
puter isn’t working because PowerShell remoting is not enabled (see above).

There is a command to test the connection to the server, and you can find
that here:

https://dbatools.io/functions/test-dbacmconnection
There is no need for updating the new server to the latest version of Power-
Shell, Version 3.0 is enough.

• The whole command looks like this for me:
• Start-SqlMigration -Verbose -Source desbsql1 -Destination desbaw2
 -BackupRestore -NetworkShare \\DESBAW2\Transfer -DisableJob
 sOnDestination -Force

• The parameter DisableJobsOnDestination is extremly helpful when you go
to the next step and test the migration itself. When you do this more than
once, you also need the parameter –Force, which overwrites the target ob-
jects (logins, databases and so on) if they exist from a previous test.

• The parameter -Verbose is useful when an error comes up and you need to
dig deeper into the problem.

• Before we wrap up, her’s a link to a YouTube video that shows how fast the
migration works. Of course it’s all going to depend on the size of your data-
bases:

This article is about server management with PowerShell and is part of the
#PSBlogWeek series (http://psblogweek.com) , created by Adam Bertram.

Index:

1. Introduction to dbatools
2. Migration Prerequisites
3. Best Practices
4. Migration
5. References

It is also part of my blog series about migrating our physical SQL Server to a
VMware Environment. For now, all of these articles are in German only – sorry.
The first three articles describe the basic server configuration, installation,
and VM guest configuration of the VMware Environment. This article de-
scribes the migration itself.
I’ll write a recap of the whole series in English later on.

1. Introduction to dbatools

I got in contact with PowerShell some years ago, but I wasn’t satisfied with
what needed to be done to maintain SQL Server.

However, Microsoft has made a lot of improvements since then, and with

contributions from several PowerShell Experts and MVPs – such as Chrissy
LeMaire, Claudio Silva, Rob Sewell, Constantine Kokkinos and many more,
there is now a module that helps to maintain SQL Server 2005+. It’s called
dbatools, and you can find it here https://dbatools.io. The project is hosted
on GitHub and the module is available totally free of charge!

The dbatools community has grown to over 50 contributors with more than
300 SQL Server best practice, administration and migration commands. An
overview of the commands can be found here: https://dbatools.io/func-
tions/.

2. Migration Prerequisites

Now, let’s turn our attention to the prerequisites for the migration of a physi-
cal SQL Server 2008 to a VMware-based SQL Server 2016 on Windows Server
2016. The positive thing here was that there was no need to reinstall every-
thing on the same physical hardware over the weekend. Instead, we
bought a totally new VMware Environment with three Dell servers, two net-
work switches, and new storage. There was enough time to test the new SQL
Server, the SAN, and build a good configuration for the virtual machines.
Most of the VM configuration is based on the blog series „Stairway to Server
Virtualization“ by David Klee, which can be found on SQL Server Central.

For migration purposes, we installed an additional Windows Server 2016 with
PowerShell 5, with SQL Server 2016 as an admin workstation. On the SQL
Server, we installed the dbatools by using the easy install-module command:

During installation, you may get a confirmation dialog prompting you to
accept installation of the NuGet Package Manager. You should accept;
otherwise, you’ll need another installation option. These options are de-
scribed on the dbatools website: https://dbatools.io/download.

The dbatools module is in permanent development – meanwhile, they are
near the first major release 1.0 – so you should check for the latest version and
update often. Updating is as easy as the installation:

On the screenshot we see five versions of the tools installed, so we have to
activate the latest version with the comand import-module.

With the last command above you get a quick overview of all the dbatools
commands.

After installation of the base SQL Server VM we need to check some basic
configuration options first. dbatools can help us with this as well.

All commands are created by experts with references to the corresponding
articles where the code comes from.

3. Best Practices

• Max Memory
• Test-DbaMaxMemory

#PSBlogWeek 55

https://youtu.be/PciYdDEBiDM

5. References:

1. Stairway to SQL Server Virtualization by David Klee
2. Using Friendly Names for SQL Servers via DNS

Thanks for reading,
Volker Bachmann

#PSBlogWeek i

Using PowerShell to Create a
vCloud Director Tenant HTML
Report

Markus Kraus
Follow on Twitter @vMarkus_K

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 57

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

Using PowerShell to
Create a vCloud Director Tenant

HTML Report

#PSBlogWeek

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

#PSBlogWeek 58

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

#PSBlogWeek 59

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 60

The aliases for vCloud Air are removed from this screenshot.

To connect to your VMware vCloud Director organization, the Cmdlet Con-
nect-CIServer works as a provider administrator and also as a tenant. Tenants
simply need to add their organization during connection:

Other PowerCLI vCloud Director examples:

• PowerCLI vCloud Director Customer Provisioning
• PowerCLI – Create vCloud Director Edge Gateway
• vCloud Director Edge-Gateway IP Report

SOME INTERESTING CMDLETS

SEARCH-CLOUD

The Search-Cloud Cmdlet is the fastest way to get vCloud Director objects
via PowerCLI. You can also list some objects for that since no typical Get-*
command is available (for example, Edge Gateways).

Example: List Edge Gateways:

All QueryTypes can be found in the VMware vSphere 6.5 Documentation
Center.

GET-CIVAPP

The Get-CIVApp Cmdlet lists all vCloud Director vApps. vApps are also
known from VMware vSphere but are way more important in vCloud Direc-
tor. A vApp can contain objects like VMs, networks, and network functions.

Example: List vApp ‚NetApp-HA‘:

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 61

GET-CIVM

The Get-CIVM Cmdlet lists all vCloud Director VMs. VMs are in vCloud Direc-
tor always children from vApps and also the Cmdlet can use Get-CIVApp as
piped input.

Example: List all VMs from vApp ‚NetApp-HA‘:

BOOTSTRAP WITH POWERSHELL BASICS

Firs I have to say I am no HTML pro and I would not have been able to create
the report without the help of this great example from Timothy Dewin. Timo-
thy created an awesome Veeam Backup & Replication HTML Report with his
PowerStartHTML PowerShell Module.

The function New-PowerStartHTML creates a new object with the necessary
methods to create a full Bootstrap HTML page. The newly created object
already includes the stylesheet for Bootstrap.

The two main methods to create your HTML page are:

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 62

Here’s an explanation from the README on GitHub:

“The difference between Add is that it will remember the new element as
the as the element. With Append, it remember the parent, so you can add
an element at the same depth.

All the possible types and classes can be found in the Bootstrap documenta-
tion.

To get started with a simple HTML file, I created a report for all available mod-
ules on my PC. The main part of the report is a simple table.

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 63

This Eexample is not very complex and it maybe also be possible to create a
simple table like this with the ConvertTo-HTML Cmdlet. But let’s get a little bit
more complex and add the commands of each Module in a sub-section of
the table.

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 64

Okay, so that table is definitely more complex than what you can create with
the ConvertTo-HTML Ccmdlet!

THE VCLOUD DIRECTOR TENANT HTML REPORT

Now that we’re familiar with the VMware PowerCLI vCloud Director Module
and the basics of Bootstrap PowerShell handling, let`s get started with the
report.

The first step is to decide which data is necessary for the vCloud Director
Tenant HTML Report. This is my selection:

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 65

With this set of data, we are now able to collect the object details from our
VMware vCloud Director server using VMware PowerCLI.

OBJECT DETAILS

GET USERS

GET CATALOGS

GET CATALOG ITEMS

GET VDCS

GET VDC EDGE GATEWAYS

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 66

GET VDC NETWORKS

GET VDC VAPPS

GET VDC VAPP VMS

FINAL VCLOUD DIRECTOR TENANT HTML REPORT

I wanted to ship the vCloud Director Tenant HTML Report script as a Power-
Shell Module since that is the best way to also include the PowerStartHTML
Module.

HOW TO CREATE A MODULE

To create my PowerShell modules in a standardized way I use the Plaster
Module with a customized template. For more details about Plaster and Plas-
ter templates, you can read my blog article.

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 67

THE ‚VMWARE-VCD-TENANTREPORT‘ MODULE

With my Plaster template and some manual modifications, I have created a
Module with PowerStartHTML as a Sub-Module. The module also ships with a
basic Pester test.

]

THE REPORT SCRIPT

The script to create the vCloud Director Tenant HTML Report is embedded in
the exported Get-VcdTenantReport function, The usage is quite simple:

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 68

The report will be automatically opened in your default browser.

VCLOUD DIRECTOR TENANT HTML REPORT POWERSCODE

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 69

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 70

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 71

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 72

The complete Module is also available as a GitHub repository.

GET THE MODULE

I love automation, so I created a simple script to get the latest release of the
vCloud Director Tenant HTML Report Module:

As we all know, VMware vCloud Director is a widely adopted IaaS platform
for the service provider market. VMware vCloud Director offers a self-service
web portal to manage your vApps, VMs, networks, and network functions
(Edge Firewall, NAT, VPN, Load Balancer, DFW, and Rrouting). But there is also
a RESTful API, and a PowerShell Module offered for the administrators and
tenants. With the help of the API, some third– party vendors offer an extend-
ed web portal (for example, OnApp). In this article, I’ll show you how to use
the VMware vCloud Director PowerShell Module (part of the famous VMware
PowerCLI) to extend the default UI with a vCloud Director Tenant HTML
Report for your most important objects. Unfortunately, there is no reporting
option offered by the self-service web portal itself.

The problem with extensive HTML reports created with PowerShell is that the
ConvertTo-HTML Cmdlet is not really flexible. So I was looking for alternative
ways and found the PowerShell module PowerStartHTML from Timothy Dewin.
This module combines PowerShell with Bootstrap, a open source toolkit for
developing with HTML, CSS, and JS. With this toolkit, I was able to create a
report that contains the necessary information’s in a nice–looking format.

VMWARE POWERCLI FOR VCLOUD DIRECTOR BASICS

The latest version of VMware PowerCLI is available on PowerShell Gallery. So
if you use PowerShell 5.0 or newer, you can install PowerCLI modules with one
simple command:

After installation is successful, you can load all VMware modules using this
command:

One of the loaded modules is VMware.VimAutomation.Cloud, which is for
VMware vCloud Director. But be aware that not all commands work as a
tenant. Some Ccmdlets are for administrative use only and others are for
vCloud Air (which was sold to OVH).

All available vCloud Director Cmdlets (and one function) on version 6.5.1:

#PSBlogWeek 73

#PSBlogWeek 74

#PSBlogWeek Wrap-Up
This week something special happened in the PowerShell community. It brought forth a third round of the popular blogging
event known as #PSBlogWeek. Born from Jeff Hicks' idea nearly a year ago, #PSBlogWeek was started to get more people
sharing their knowledge with the PowerShell community through blogging. Six willing volunteers to took their valuable time and
posted a technical, content-rich article on their blog all coordinated around a central theme.

#PSBlogWeek is special because it's simply not about one person and a blog. It's about a coordinated effort between multiple
people not only to write the articles but also to promote them as well. #PSBlogWeek is a way to start giving back that knowl-
edge you have stored in your noggin and is a great way to get some exposure to yourself and your writing. #PSBlogWeek is
heavily promoted on Twitter by many of the top PowerShell personalities in the community as well as by the participants them-
selves. If you're looking for an excuse to start blogging on PowerShell and want to be sure people see it, #PSBlogWeek is a great
opportunity.

This week's theme was Server Management. Big thanks to the following participants for their contributions. Be sure to check
out all of the great posts if you haven't already and let the authors know via Twitter if they helped you learn a thing or two.

Monday (Dan Franciscus @dan_franciscus) – Automating Chocolatey Package Internalizing With PowerShell
 (Darwin Sanoy @DarwinTheorizes) – Logging and Error Handling Best Practices for Automating Windows Update Installs

Tuesday (Joshua King @windosnz) – Creating Storage Reports With Powershell

Wednesday (Josh Duffney @joshduffney) – Using Desired State Configuration (DSC) Composite Resources

Thursday (Volker Bachmann @VolkerBachmann) – Migration of SQL Server With PowerShell dbatools

Friday (Markus Kraus @vMarkus_K) – Using PowerShell to Create a vCloud Director Tenant HTML Report

Editing by: Sarah Cisco

#PSBlogWeek events are not held on a particular schedule but if you're a blogger and want to be part of the next one, contact
Adam Bertram (@adbertram) on Twitter. He will be gathering a list of interested participants to potentially be notified the next
time the event is held.

